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The Use of Absorbing Boundary

Conditions in the Method of Lines
Ke W@ Senior Member, IEEE, and Xiaohong Jiang

Abstract-An artificial lossy absorbing boundary condition is
proposed for use in the method of lines for simulating unbounded
electromagnetic structures. It is found, through the modeting
restdts of a microstrip line, that the proposed absorbing boundary
condition could be effective and a simple rule of application may
be established.

I. INTRODUCTION

T HE proposal of an absorbing boundary condition (ABC)

[1] for the method of lines (MoL) paves the way for ef-

fective simulation and modeling of unbounded electromagnetic

structures. The ABC is derived from a factorization technique

of Helmholtz wave operator. Very recently, the perfectly-

matched layer (PML) technique [2] has stimulated a great

interest in both time-domain and frequency-domain simula-

tion of electromagnetic scattering, radiation, and propagation

problems. The PML technique involves the application of a

nonphysical absorbing material adjacent to the computational

boundary. The PML material has characteristics that permit

electromagnetic waves of atbitrary frequency and angle of

incidence to be absorbed while maintaining the impedance and

velocity of a lossless dielectric [3]. This technique has shown

its effectiveness and generality of handling a large class of

problems in discrete domain techniques.

Inspired by the PML concept, this work attempts to intro-

duce an artificial lossy factor in the ABC that was formulated

for the method of lines [1]. Results show that effectiveness

of the ABC may be reinforced and the computational window

required to achieve the same accuracy of result may become

smaller.

II. FORMULATION

Considering a simple example of searching for the effective

permhtivity c,.. of a unbounded microstrip line, it is known

that the ABC used in the MoL is derived from the wave

factorization at a specific boundary along the transverse di-
rection, where the relative dielectric permittivity ET(= s;) is

real for a lossless case. The operator of the Helmholtz equation

governing electric and magnetic potentials can be factorized

into inbound and outbound parts as in [1]

L+ = L+ L-~ = Q (1)
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with

L* = D% +cjfi~~, S2 = D;/Ed, Ed = e. – Cr..

(2)

The detail of (2) can be referred to [1]. It should be pointed out

that the second-order approximation of /~ % PO + pzS2
made in [1] is valid if and only if the absolute value of S

is smaller than one. Although it is true that p. and pz can

be chosen to be a set of specific values according to the
Taylor series at a designated point of S, and it also true

that the use of the much better Pad6 approximation may

lead to some additional improvement, it is our interest to

pursue the same approximation as in [1] for the purpose of

comparison. In the above second-order approximation, p. and

pz are chosen to be 1.0 and 0.5, respectively. The wave

factorization (complex term) and Taylor approximation will

inevitably introduce a complex propagation constant for the

lossless case. It is obvious that the absolute value of S depends

analytically on &d as long as the discretization scheme and

size of computational window (a) are fixed. The differential

operator D; seems somewhat to be stationary. Looking into

the explicit formulation of D; suggests that

‘ =F ‘3)‘s’= &

in which tfz’ stands for eigenvalues of the second-order

z-directed finite-difference operator. This equation indicates

that choosing a fine dlscretization size hz cannot guarantee

automatically IS I < 1.0 unless a undesirable large size of

the computational window (a) is selected. To keep the value

of (a) to be minimized, there are two possibilities: selecting

alternative set of vahte for p. and pz, or introducing an

artificial Iossy parameter added in the term of dielectric

permittivity at the boundary of interest. The first technique

[4] has to deal with two parameters while the second strategy

is relatively simple. In the Iossless case, the approximation will
be certainly reinforced by applying the second condition such

that ISI < 1.0 is always satisfied. This is done by defining a

nonphysical lossy layer with a thickness of h. and complex

term Ed = &~—&re with &r = ~~ —J”s# for the outer boundaries.
In this way, a better absorbing condition may be obtained by

choosing an appropriate value of s;.

III. RESULTS AND DISCUSSION

Naturally, the use of the artificial lossy boundary condition

also Ieads to a complex propagation constant of which the
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Fig. 1. Convergence feature of complex effective permittivity of a un-
bounded rnicrostrip tine with respect to the value of the proposed artificial

lossy factor for different computational windows (strip width w = 1 mm,
tbictmess of dielectric substrate d = 1 mm, .f = 5 GHz, e: =.8.875, and

nine lines intersecting the strip).

imaginary part can, however, be minimized into a negligible

level. This can be achieved by choosing certain value of e:.

Fig. 1 shows a monotonic concurrent convergence of com-

plex effective permittivity as the artificial lossy factor increases

for different size of computational window. The results suggest

that the original implementation of the ABC with E: = O leads

to a positive imaginary part of the effective permittivity that is

not physical (see the imaginary part). Clearly, the introduction

of nonzero e: leads to better results in most situations, in

particular for smaller computational windows. Nevertheless,

the computational window should have a relative width “a/w”

greater than or at least equal to eight. In this case, the effective

permittivity is quite stable with regard to the choice of the

artificial lossy factor.

Fig. 2 presents the imaginary part of the normalized prop-

agation constant as a function of frequency with different

artificial lossy factor e: ranging from low to high value with

respect to e;. It should be noted that the real part of the nor-

malized propagation constant that is not shown in the letter for

brevity remains almost the same regardless of the high value

of E; as long as the condition of+! > &~ is satisfied or a large

computational window “a” is selected. The imaginary part that

is not shown in [1] witbout considering the artificial 10SSY

factor may be positive. Under the proposed artificial lossy

condition, the nonphysical imaginary part of the propagation

constant for a lossless structure can be significantly decreased

as shown in Fig. 2 for a large vahte of e;. It seems that the

optimum choice of ~~ is equal to (the limiting case) or higher

than e; in our calculations. More precisely, the error range in

the case of e: ~ e; will be reduced at least by half compared to

the results without using the artificial lossy factor. Considering

the limiting case of the artificial lossy factor e; = e; that

yields an imaginary value in the proximity of zero over a

large frequency band of interest, the optimum vahte of s;

should be chosen such that the imagin~ part is reduced to a

negligible negative value. As indicted in Figs. 1 and 2, such

an empirical relation s: > s; is found to be not so sensitive
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Fig. 2. Electrical performance of different artificial lossy factor c: and
the proposed empiricat formula on the imaginary part of the normalized

propagation constant as a function of frequency with the computational
window of a = 8 mm (the same geometrical ancl electrical conditions as

in Fig. 1).
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Fig. 3. Characteristics of complex effective perrmttivity versus the size of
computational window with the artificial 10SSYfactor obtained by the empirical
formula compared to [1] (the same geometrical and electrical conditions as

in Fig. 1).

to higher frequency and line parameters of guiding structure

as long as the results at lower frequency become satisfactory

owing to the field con Iinement at higher frequency. This is

attributed to the fact that the artificial 101ssfactor is actually

used in reducing the effect of the Taylor approximation on

the propagation constant. Under the condition of “a/w” z 8,

an empirical formula fcm selecting the artificial 10SSYfactor is

proposed in the following:

E:
(4)

‘: = ‘: + ().(_)30f3 – 0.149~2 + 0.587~ – 0.458

in which the unity of frequency is GHz and ~ # O. As shown

in Fig. 2, the imaginary part obtained by using this formula
is always negative, but very close to zero, for frequency

greater than 1 GHz. Fig. 3 shows clear] y the advantages of

adding the artificial lossy factor which yields much more

stable and accurate results for a smaller cc}mptttational window

(a) compared to the case without using e;, and at the same
time the imaginaty part of q. tends to be zero if “a/w”
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~ 8 and the proposed empirical formula (4) is satisfied. This

demonstrates a useful feature of the lossy absorbing boundary

for high numerical efficiency. This is in particular of interest

for three~dimensional unbounded problems.

IV. CONCLUSION

A lossy ABC is proposed for effective use of the method

of lines for unbounded electromagnetic problems. Results

indicate that the added lossy factor makes it possible to choose

a smaller computational window with a better numerical ac-

curacy compared to the conventional technique. The artificial

Iossy factor can be chosen by applying the empirical formula.

It may come to conclude that the physical approximation of

an absorbing boundary condition through truncation could be
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“compensated” by using an appropriate artificial (nonphysical)

model.
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