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The Use of Absorbing Boundary
Conditions in the Method of Lines

Ke Wu, Senior Member, IEEE, and Xiaohong Jiang

Abstract— An artificial lossy absorbing boundary condition is
proposed for use in the method of lines for simulating unbounded
electromagnetic structures. It is found, through the modeling
results of a microstrip line, that the proposed absorbing boundary
condition could be effective and a simple rule of application may
be established.

I. INTRODUCTION

HE proposal of an absorbing boundary condition (ABC)

[1] for the method of lines (MoL) paves the way for ef-
fective simulation and modeling of unbounded electromagnetic
structures. The ABC is derived from a factorization technique
of Helmholtz wave operator. Very recently, the perfectly-
matched layer (PML) technique [2] has stimulated a great
interest in both time-domain and frequency-domain simula-
tion of electromagnetic scattering, radiation, and propagation
problems. The PML technique involves the application of a
nonphysical absorbing material adjacent to the computational
boundary. The PML material has characteristics that permit
electromagnetic waves of arbitrary frequency and angle of
incidence to be absorbed while maintaining the impedance and
velocity of a lossless dielectric [3]. This technique has shown
its effectiveness and generality of handling a large class of
problems in discrete domain techniques.

Inspired by the PML concept, this work attempts to intro-
duce an artificial lossy factor in the ABC that was formulated
for the method of lines [1]. Results show that effectiveness
of the ABC may be reinforced and the computational window
required to achieve the same accuracy of result may become
smaller.

II. FORMULATION

Considering a simple example of searching for the effective
permittivity €., of a unbounded microstrip line, it is known
that the ABC used in the MoL is derived from the wave
factorization at a specific boundary along the transverse di-
rection, where the relative dielectric permittivity £,.(= €).) is
real for a lossless case. The operator of the Helmholtz equation
governing electric and magnetic potentials can be factorized
into inbound and outbound parts as in [1]
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with
L*F =Dyt j\/eqV1+ 82, §*=Dijeq, €a=¢r— tre
@
The detail of (2) can be referred to [1]. It should be pointed out
that the second-order approximation of v/1 + 52 & pg + p 52
made in [1] is valid if and only if the absolute value of S
is smaller than one. Although it is true that py and py can
be chosen to be a set of specific values according to the
Taylor series at a designated point of S, and it also true
that the use of the much better Padé approximation may
lead to some additional improvement, it is our interest io
pursue the same approximation as in [1] for the purpose of
comparison. In the above second-order approximation, py and
pg are chosen to be 1.0 and 0.5, respectively. The wave
factorization (complex term) and Taylor approximation will
inevitably introduce a complex propagation constant for the
lossless case. It is obvious that the absolute value of S depends
analytically on ¢4 as long as the discretization scheme and
size of computational window (a) are fixed. The differential
operator Dg seems somewhat to be stationary. Looking into
the explicit formulation of D2 suggests that

10| | ferma)
1= | 22] < [AE | )

in which 6** stands for eigenvalues of the second-order
z-directed finite-difference operator. This equation indicates
that choosing a fine discretization size h, cannot guarantee
automatically |S| < 1.0 unless a undesirable large size of
the computational window (a) is selected. To keep the value
of (a) to be minimized, there are two possibilities: selecting
alternative set of value for py and p,, or introducing an
artificial lossy parameter added in the term of dielectric
permittivity at the boundary of interest. The first technique
{4] has to deal with two parameters while the second strategy
is relatively simple. In the lossless case, the approximation will
be certainly reinforced by applying the second condition such
that |S| < 1.0 is always satisfied. This is done by defining a
nonphysical lossy layer with a thickness of h, and complex
term £4 = €, —&e With £, = &/, — j&// for the outer boundaries.
In this way, a better absorbing condition may be obtained by
choosing an appropriate value of €/,

II. RESULTS AND DISCUSSION

Naturally, the use of the artificial lossy boundary condition
also leads to a complex propagation constant of which the

1051-8207/96$05.00 © 1996 IEEE



IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 6, NO. 5, MAY 1996

6.3

6.2

6.1

[
w
<
O

o

6.0

5.9

5.8

Fig. 1. Convergence feature of complex effective permittivity of a un-
bounded microstrip line with respect to the value of the proposed artificial
lossy factor for different computational windows (strip width w = 1 mm,
thickness of dielectric substrate d = 1 mm, f = 5 GHz, ], =.8.875, and
nine lines intersecting the strip).

imaginary part can, however, be minimized into a negligible
Ievel. This can be achieved by choosing certain value of &//.

Fig. 1 shows a monotonic concurrent convergence of com-
plex effective permittivity as the artificial lossy factor increases
for different size of computational window. The results suggest
that the original implementation of the ABC with £/ = 0 leads
to a positive imaginary part of the effective permittivity that is
not physical (see the imaginary part). Clearly, the introduction
of nonzero £/ leads to better results in most situations, in
particular for smaller computational windows. Nevertheless,
the computational window should have a relative width “a /w”
greater than or at least equal to eight. In this case, the effective
permittivity is quite stable with regard to the choice of the
artificial lossy factor.

Fig. 2 presents the imaginary part of the normalized prop-
agation constant as a function of frequency with different
artificial lossy factor !/ ranging from low to high value with
respect to /.. It should be noted that the real part of the nor-
malized propagation constant that is not shown in the letter for
brevity remains almost the same regardless of the high value
of £/ as long as the condition of €/ > /. is satisfied or a large
computational window “a” is selected. The imaginary part that
is not shown in [1] without considering the artificial lossy
factor may be positive. Under the proposed artificial lossy
condition, the nonphysical imaginary part of the propagation
constant for a lossless structure can be significantly decreased
as shown in Fig. 2 for a large value of £/ It secems that the
optimum choice of & is equal to (the limiting case) or higher
than &/, in our calculations. More precisely, the error range in
the case of &/ > &/ will be reduced at least by half compared to
the results without using the artificial lossy factor. Considering
the limiting case of the artificial lossy factor e/ = ¢/ that
yields an imaginary value in the proximity of zero over a
large frequency band of interest, the optimum value of &
should be chosen such that the imaginary part is reduced to a
negligible negative value. As indicted in Figs. 1 and 2, such
an empirical relation €/ > &/ is found to be not so sensitive
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Fig. 2. Electrical performance of different artificial lossy factor &}/ and
the proposed empirical formula on the imaginary part of the normalized
propagation constant as a function of frequency with the computational
window of @ = 8 mm (the same geometrical and electrical conditions as
in Fig. 1).
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Fig. 3. Characteristics of complex effective permuttivity versus the size of
computational window with the artificial lossy factor obtained by the empirical
formula compared to [1] (the same geometrical and electrical conditions as
in Fig. 1).

to higher frequency and line parameters of guiding structure
as long as the results at lower frequency become satisfactory
owing to the field confinement at higher frequency. This is
attributed to the fact that the artificial loss factor is actually
used in reducing the effect of the Taylor approximation on
the propagation constant. Under the condition of “a/w” > 8,
an empirical formula for selecting the artificial lossy factor is
proposed in the following:

5,

r 4
0.03073 — 0.149f2 + 0.587f — 0.458 @)

"o
g, =&, +

in which the unity of frequency is GHz and f # 0. As shown
in Fig. 2, the imaginary part obtained by using this formula
is always negative, but very close to zero, for frequency
greater than 1 GHz. Fig. 3 shows clearly the advantages of
adding the artificial lossy factor which yields much more
stable and accurate results for a smaller computational window
(a) compared to the case without using ¢/, and at the same
time the imaginary part of ¢, tends to be zero if “a/w”
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> 8 and the proposed empirical formula (4) is satisfied. This
demonstrates a useful feature of the lossy absorbing boundary
for high numerical efficiency. This is in particular of interest
for three-dimensional unbounded problems.

IV. CONCLUSION

A lossy ABC is proposed for effective use of the method
of lines for unbounded electromagnetic problems. Results
indicate that the added lossy factor makes it possible to choose
a smaller computational window with a better numerical ac-
curacy compared to the conventional technique. The artificial
lossy factor can be chosen by applying the empirical formula.
It may come to conclude that the physical approximation of
an absorbing boundary condition through truncation could be
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“compensated” by using an appropriate artificial (nonphysical)
model.
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